Modulus, Argument, Polar Form, Argand diagram and deMoivre's Theorem

1. Find the modulus and argument of

(i)
$$\frac{1+i}{1-i}$$
 (ii) $\frac{1+\sqrt{2}+i}{1-i}$ (iii) $\cos \theta - i \sin \theta$ (iv) $1+i \tan \theta$
In (iii) and (iv), $0 < \theta < \frac{\pi}{2}$.

2. Show that :

- (i) $|z|^{2} = (\mathbf{R}(z))^{2} + (\mathbf{I}(z))^{2}$ (ii) $|z| \ge |\mathbf{R}(z)| \ge \mathbf{R}(z)$ (iii) $|\overline{z}| = |z|$ (iv) $|z_{1}z_{2}| = |z_{1}| |z_{2}|$ (v) $\overline{z_{1}z_{2}} = \overline{z}_{1}\overline{z}_{2}$ (vi) $|z|\sqrt{2} \ge |\mathbf{R}(z)| + |\mathbf{I}(z)|$ (vii) $z_{1}\overline{z}_{2} + \overline{z}_{1}z_{2} = 2\mathbf{R}(z_{1}\overline{z}_{2})$ (viii) $\left|\frac{z_{1}}{|z_{2} + z_{3}}\right| \le \frac{|z_{1}|}{||z_{2}| - |z_{3}||}$
- $\textbf{3.} \quad \ \ If \quad |z-2-i|<2 \quad and \quad |w-5-5i|<1, \ find \ the \ maximum \ and \ minimum \ of \quad |z-w| \ .$
- 4. If $w = \frac{z_1 + z_2}{z_1 z_2}$, the numbers being complex and $z_1 \neq z_2$, show that the necessary and sufficient condition for the real part of w to be zero is $|z_1| = |z_2|$.

5. Let
$$f(z) = \sum_{k=0}^{n} a_k z^k$$
, where $z = r(\cos \theta + i \sin \theta)$ and each a_k is real. Show that $|f(z)|^2 = \sum_{k=0}^{n} \sum_{j=0}^{n} r^{k+j} a_k a_j \cos(k-j)\theta$.

- 6. (i) Given that $z_1 z_2 \neq 0$, use the polar form to prove that $\mathbf{R}(z_1 \overline{z}_2) = |z_1| |z_2|$ if and only if arg $z_2 = \arg z_1 \pm 2n\pi$ (n = 0, 1, 2, ...)
 - (ii) Given that $z_1z_2 \neq 0$, use the above result to prove that $|z_1 + z_2| = |z_1| + |z_2|$ if and only if arg $z_2 = \arg z_1 \pm 2n\pi$ (n = 0, 1, 2, ...)

Also, note the geometric verification of this statement.

- 7. Describe the following loci in the Argand diagram:
 - (i) $\arg \frac{z z_1}{z z_2} = \frac{\pi}{6}$ (ii) $|z - z_1| - |z - z_2| = 3$ (iii) $|z + 3i|^2 - |z - 3i|^2 = 12$ (vi) $|z + 3i|^2 + |z - 3i|^2 = 90$.
- 8. Let z_0 be a fixed complex number and R a positive constant. Show why point z lies on a circle of radius R with center at $-z_0$ when z satisfies any one of the equations.

(i)
$$|z + z_0| = R$$
;

- (ii) $z + z_0 = R(\cos \phi + i \sin \phi)$ where ϕ is real;
- (iii) $z\overline{z} + \overline{z}_0 z + z_0 \overline{z} + z_0 \overline{z}_0 = R^2$

- 9. (i) Sketch on an Argand diagram the locus represented by the equation |z 1| = 1. Shade on your diagram the region for which |z - 1| < 1 and $\pi/6 < \arg z < \pi/3$.
 - (ii) Draw the line |z| = |z 4| and the half-line $\arg(z i) = \pi/4$ in the Argand diagram. Hence find the complex number that satisfies both equations.

10. Use the polar form to show that

- (i) $i(1-i\sqrt{3})(\sqrt{3}+i) = 2 + 2i\sqrt{3}$
- (ii) $(-1+i)^7 = -8(1+i)$
- (iii) $(1 + i\sqrt{3})^{-10} = 2^{-11}(-1 + i\sqrt{3})$
- 11. Express $\sqrt{3} i$ in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\pi < \theta \le \pi$. Hence show that, when n is a positive integer, $(\sqrt{3} - i)^n + (\sqrt{3} + i)^n = 2^{n+1} \cos \frac{n\pi}{6}$.

12. If $(1+i\sqrt{3})^n = a_n + ib_n$, where a_n , b_n are real numbers, show that $a_{n-1}b_n - a_nb_{n-1} = 4^{n-1}\sqrt{3}$ and $a_na_{n-1} + b_nb_{n-1} = 4^{n-1}$.

- **13.** If n is a positive integer, show that
 - (i) $(\cos \theta i \sin \theta)^n = \cos n\theta i \sin n\theta$
 - (ii) $(1 i \tan \theta)^n (1 + i \tan n\theta) = (1 + i \tan \theta)^n (1 i \tan n\theta)$

(iii) $(1+i)^{2n} + (1-i)^{2n} = \begin{cases} 0 & \text{if n is odd,} \\ 2^{n+1} & \text{if n/2 is an even integer,} \\ -2^{n+1} & \text{if n/2 is an odd integer.} \end{cases}$

14. If n is a positive integer, prove that
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$

- **15.** Solve the equation : $(\cos \theta + i \sin \theta) (\cos 2\theta + i \sin 2\theta) \dots (\cos n\theta + i \sin n\theta) = 1$.
- **16.** If α and β are the roots of $t^2 2t + 2 = 0$, express α and β in the form $r(\cos \theta + i \sin \theta)$ and show $\alpha^{4m} + \beta^{4m} = (-1)^m 2^{2m+1}$, where m is an integer.
- 17. a, c are positive real numbers and b is a complex number. Let $f(z) = az\overline{z} + bz + \overline{b}\overline{z} + c$ for every complex number z, where \overline{z} denotes the conjugate of z. Prove the following:
 - (i) $af(z) = |az + \overline{b}|^2 + ac |b|^2$
 - (ii) $f(z) \ge 0$ for all z if and only if $|b|^2 \le ac$
 - (iii) The equation f(z) = 0 has a solution if and only if $|b|^2 \ge ac$

- 18. (i) Prove algebraically that $|z_1 + z_2| \le |z_1| + |z_2|$ where z_1, z_2 are complex numbers.
 - (ii) Show that if $|a_n| < 2$ for $1 \le n \le N$ then the equation $1 + a_1z + \ldots + a_Nz^N = 0$ has no solution such that $|z| < \frac{1}{3}$.
- 19. By considering the modulus of the left-hand side, prove that all the roots of the equation $z^n \cos \theta_0 + z^{n-1} \cos \theta_1 + \ldots + \cos \theta_n = 2$

where $\theta_0, \ldots, \theta_n$ are real, lie outside the circle $|z| = \frac{1}{2}$.

- **20.** (i) Prove that, for any complex numbers z_1 , z_2 , $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2|z_1|^2 + 2|z_2|^2$.
 - (ii) Two sequences $a_0, a_1, a_2, ...$ and $b_0, b_1, b_2, ...$ of complex numbers are defined as follows $a_0 = b_0 = c = \cos \theta + i \sin \theta$ and $a_{k+1} = a_k + c^{2^k} b_k$, $b_{k+1} = a_k - c^{2^k} b_k$, for $k \ge 0$.

Show that $|a_n|^2 + |b_n|^2 = 2^{n+1}$ for all integers $n \ge 0$.

Hence show that $|a_n| \le (\sqrt{2})^{n+1}$ and $|b_n| \le (\sqrt{2})^{n+1}$.

21. (i) Prove that, if z's are any complex numbers and c is positive, then $|z_1 + z_2|^2 \le (1 + c) |z_1|^2 + (1 + c^{-1}) |z_2|^2$.

Under what condition does the sign of equality hold ?

(ii) Prove also that, if the a's are positive numbers such that $a_1^{-1} + \ldots + a_n^{-1} = 1$, then $|z_1 + \ldots + z_n|^2 \le a_1 |z_1|^2 + \ldots + a_n |z_n|^2$.